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Problem

« Continuum Kkinetic plasma simulations need to
maintain positivity and monotonicity of the
distribution function for a physical solution

 This requires the introduction of limiters to the
simulations

» Here, we investigate the utility of various
limiters for the Discontinuous Galerkin (DG)
method, a highly parallelizable and efficient
technique with many recent developments




Plasma edge: A tricky place

» Plasma edge presents simulation challenges
» Large density/amplitude variations, large relative
banana width, wide range of collisionalities

— Stick with full-F simulations

- Need good limiters to ensure positivity, many algorithms
produce oscillations at large gradients (Gibb's phenomenon)

« Small charge imbalances lead to large fields
- Need to ensure particle conservation exactly

« Algorithm also needs to minimize artificial
dissipation (some is OK as a subgrid model)




Test problem: advection
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* Paradigm problem on algorithm subtleties - thousands of
papers written on this equation and extensions across
many application domains (climate, CFD, architecture,
astrophysics, nanotech/MEMS and more)

» Surprisingly tricky to get a robust, efficient, high order
accurate solution with desired conservation and
monotonicity/positivity properties

» Exact solution for constant v: translation

f(x,t) = fo(x — vt)




DG Algorithm

* Multiply the equation by a test function and
integrate over one cell
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* F(f.f%) isanumerical flux
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« Expand f as polynomial: /i (z.t) = > f} () P* (2)
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 Pick suitable test function (usually same
basis as for f), and numerical flux

» Gives equations for polynomial weight time
evolution
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(From Nair,Levy, Lauritzen, 2011)



Typical DG solution

» Advection equation simulated for one
revolution, Lagrange basis for polynomials,
3" order polynomials in each cell (5™ order
accuracy due to DG superconvergence)

DG solution (no limiter)
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» Negative values, oscillations around the
discontinuity typical of high order methods
without limiters

* Otherwise good in smooth regions, low
dissipation, conservative (all DG)




Limiting

* Need to determine restrictions on local
polynomial coefficients to keep solution
nonoscillatory

1%t order polynomial example:
reconstructed f(x)
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(From R J Leveque, 2002)




Minmod

 Basic limiter for first order reconstruction
& building block for advanced limiters
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smin(|al,|b|,|c|) if s = sign(a) = sign(b) = sign(c)

minmod(a,b.c) = { 0 otherwise .

DG solution with minmod
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» Clips extrema, somewhat diffusive



Minmod

 Basic limiter for first order reconstruction
& building block for advanced limiters
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smin(|al,|b|,|c|) if s = sign(a) = sign(b) = sign(c)
0 otherwise .
DG solution with minmod

minmod(a,b,c) = {
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» Implemented incorrectly for DG in some literature (e.g.

Nair, Levy, Lauritzen) DG solution incorrect minmod
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Positivity preservation

« Possible to design limiters that enforce the
less restrictive condition of positivity,
rather than monotonicity

E.g. Zhang & Shu maximum principle limiter

DG solution positivity preserving
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« Ideais to scale polynomials within a cell so that
interpolated values used in the DG scheme never
exceed [0,Max]

» Preserves positivity and smooth extrema is not
clipped, but also allows oscillations to be generated
in the solution



High order limiters

DG moment limiter uses a recursive
minmod approach — use minmod on highest
polynomial moment, recurse to next highest
moment if previous one limited by minmod

DG solution moment limiter
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» Appears to maintain high order accuracy
near smooth extrema and no oscillations
generated

» Expensive to extend this limiter to high
dimenSionS (Krivodonova, 2007)



Non-clipping limiters

Standard PPM4 New XPPM
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» Recent advances in non-clipping limiters for finite volume schemes
e.g. XPPM, Collela & Sekora 2008

» Detect discontinuities (allowed for hyperbolic problems), revert to low
order in non smooth regions, introduce minimum diffusion to
preserve monotonicity




Non-clipping limiters
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 In finite volume methods, information from three adjacent
cells is not sufficient to distinguish smooth extremum from
a discontinuity.




Future work

* A number of recent papers work on extending moment
style limiters to unstructured meshes and high dimensions
without compromising computation efficiency

« Investigate these approaches for their usefulness on
edge plasma related test problems

* Can the recent developments in non-clipping finite volume
limiters be converted into techniques for high-order,
efficient DG limiters?
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